Adaptive Resonance Theory

Farhad

Shenzhen University

2018.12.24

・ロト ・ ア・ ・ ヨト ・ ヨト

2 Adaptive Resonance Theory

- Fuzzy ART
- Fuzzy ARTMAP
- 3 Numerical Example

イロト イヨト イヨト イ

프 🕨 🗉 프

- Adaptive Resonance Theory
 Fuzzy ART
 - Fuzzy ARTMAP
- 3 Numerical Example
- 4 Summary
- 5 References

One of the main challenges of batch-learning models, i.e., MLP and RBF, is to overcome the **stability-plasticity** dilemma. Stability-plasticity means:

• The model should be **stable** enough to remember previous learned samples, and

イロト イヨト イヨト イ

• **Plastic** enough to absorb (learn) new input(s).

One of the main challenges of batch-learning models, i.e., MLP and RBF, is to overcome the **stability-plasticity** dilemma. Stability-plasticity means:

• The model should be **stable** enough to remember previous learned samples, and

イロト イポト イヨト イヨト

• **Plastic** enough to absorb (learn) new input(s).

Introduction

To solve the problem of **stability-plasticity** dilemma, **online ANNs** that are able to learn incrementally have been proposed, e.g. Adaptive Resonance Theory (ART)and Fuzzy Min-Max(FMM) networks.

- The training samples are presented **one-by-one** for learning,
- Able to learn only new input samples, instead of re-learning all previously learned samples,
- Able to learn new knowledge without **disturbing or forgetting** existing knowledge, and
- Able to predict the label (target) of a new input sample during learning.

Introduction

To solve the problem of **stability-plasticity** dilemma, **online ANNs** that are able to learn incrementally have been proposed, e.g. Adaptive Resonance Theory (ART)and Fuzzy Min-Max(FMM) networks.

- The training samples are presented **one-by-one** for learning,
- Able to learn only new input samples, instead of re-learning all previously learned samples,
- Able to learn new knowledge without disturbing or forgetting existing knowledge, and
- Able to predict the label (target) of a new input sample during learning.

Introduction

To solve the problem of **stability-plasticity** dilemma, **online ANNs** that are able to learn incrementally have been proposed, e.g. Adaptive Resonance Theory (ART)and Fuzzy Min-Max(FMM) networks.

- The training samples are presented **one-by-one** for learning,
- Able to learn only new input samples, instead of re-learning all previously learned samples,
- Able to learn new knowledge without disturbing or forgetting existing knowledge, and
- Able to predict the label (target) of a new input sample during learning.

Introduction

To solve the problem of **stability-plasticity** dilemma, **online ANNs** that are able to learn incrementally have been proposed, e.g. Adaptive Resonance Theory (ART)and Fuzzy Min-Max(FMM) networks.

- The training samples are presented **one-by-one** for learning,
- Able to learn only new input samples, instead of re-learning all previously learned samples,
- Able to learn new knowledge without disturbing or forgetting existing knowledge, and
- Able to predict the label (target) of a new input sample during learning.

Fuzzy ART Fuzzy ARTMAP

イロト イポト イヨト イヨト

Adaptive Resonance Theory
 Fuzzy ART

- Fuzzy ARTMAP
- 3 Numerical Example
- 4 Summary
- 5 References

Fuzzy ART Fuzzy ARTMAP

Adaptive Resonance Theory

- Adaptive Resonance Theory (ART) is known as a human cognitive information processing theory which has led to evolve many online neural network models.
- Proposed by Gail Carpenter and Stephen Grossberg (Boston University) in 1980s.
- ART models incorporate new data by measuring the similarity level between the existing prototype nodes and a new input sample against a threshold, i.e.,the vigilance test. If the vigilance test is not satisfied, a new prototype node can be added to learn the new input sample.

Fuzzy ART Fuzzy ARTMAP

Adaptive Resonance Theory

- Adaptive Resonance Theory (ART) is known as a human cognitive information processing theory which has led to evolve many online neural network models.
- Proposed by Gail Carpenter and Stephen Grossberg (Boston University) in 1980s.
- ART models incorporate new data by measuring the similarity level between the existing prototype nodes and a new input sample against a threshold, i.e.,the vigilance test. If the vigilance test is not satisfied, a new prototype node can be added to learn the new input sample.

Fuzzy ART Fuzzy ARTMAP

Adaptive Resonance Theory

- Adaptive Resonance Theory (ART) is known as a human cognitive information processing theory which has led to evolve many online neural network models.
- Proposed by Gail Carpenter and Stephen Grossberg (Boston University) in 1980s.
- ART models incorporate new data by measuring the similarity level between the existing prototype nodes and a new input sample against a threshold, i.e.,the vigilance test. If the vigilance test is not satisfied, a new prototype node can be added to learn the new input sample.

Fuzzy ART Fuzzy ARTMAP

< □ > < 同 > < 三 > <

-∃=->

Adaptive Resonance Theory

Some models of ART:

ART1 binary input, unsupervised

ART2 continuous input, unsupervised Fuzzy ART continuous input, unsupervised ARTMAP binary input, supervised Fuzzy ARTMAP continuous input, supervised

Fuzzy ART Fuzzy ARTMAP

イロト イポト イヨト イヨト

Adaptive Resonance Theory

Some models of ART:

ART1 binary input, unsupervised ART2 continuous input, unsupervised Fuzzy ART continuous input, unsupervised ARTMAP binary input, supervised Fuzzy ARTMAP continuous input, supervised

Fuzzy ART Fuzzy ARTMAP

イロト イポト イヨト イヨト

Adaptive Resonance Theory

Some models of ART:

ART1 binary input, unsupervised ART2 continuous input, unsupervised Fuzzy ART continuous input, unsupervised ARTMAP binary input, supervised Fuzzy ARTMAP continuous input, supervised

Fuzzy ART Fuzzy ARTMAP

イロト イヨト イヨト イ

-∃=->

Adaptive Resonance Theory

Some models of ART:

ART1 binary input, unsupervised ART2 continuous input, unsupervised Fuzzy ART continuous input, unsupervised ARTMAP binary input, supervised

Fuzzy ART Fuzzy ARTMAP

< □ > < 同 > < 三 > <

-∃=->

Adaptive Resonance Theory

Some models of ART:

ART1 binary input, unsupervised ART2 continuous input, unsupervised Fuzzy ART continuous input, unsupervised ARTMAP binary input, supervised Fuzzy ARTMAP continuous input, supervised

Fuzzy ART Fuzzy ARTMAP

Adaptive Resonance Theory

- Among different models of ART, Fuzzy ART and Fuzzy ARTMAP(FAM)are two popular unsupervised and supervised models,
- Both models merge the capability of ART in solving the stability-plasticity dilemma with the capability of fuzzy set theory in handling vague and imprecise human linguistic information.

Fuzzy ART Fuzzy ARTMAP

Adaptive Resonance Theory

- Among different models of ART, Fuzzy ART and Fuzzy ARTMAP(FAM)are two popular unsupervised and supervised models,
- Both models merge the capability of ART in solving the stability-plasticity dilemma with the capability of fuzzy set theory in handling vague and imprecise human linguistic information.

Fuzzy ART Fuzzy ARTMAP

Fuzzy ART Fuzzy ARTMAP

Fuzy ART consists of three layers:

- f₀ is pre-processing layer,
- f₁ is the input layer, and
- f₂ is is the recognition layer.

★ロト★個と★注と★注と、注

Fuzzy ART Fuzzy ARTMAP

Fuzy ART consists of three layers:

- *f*₀ is pre-processing layer,
- *f*₁ is the input layer, and
- *f*₂ is is the recognition layer.

ヘロト 人間 とくほとくほとう

Fuzzy ART Fuzzy ARTMAP

Fuzy ART consists of three layers:

- *f*₀ is pre-processing layer,
- *f*₁ is the input layer, and
- *f*₂ is is the recognition layer.

ヘロト 人間 とくほとくほとう

Fuzzy ART Fuzzy ARTMAP

Fuzy ART consists of three layers:

- *f*₀ is pre-processing layer,
- *f*₁ is the input layer, and
- *f*₂ is is the recognition layer.

ヘロト 人間 とくほとくほとう

Fuzzy ART Fuzzy ARTMAP

Fuzy ART consists of three layers:

- *f*₀ is pre-processing layer,
- *f*₁ is the input layer, and
- f₂ is is the recognition layer.

ヘロト 人間 とくほとくほとう

э

Fuzzy ART Fuzzy ARTMAP

Fuzy ART consists of three layers:

- *f*₀ is pre-processing layer,
- *f*₁ is the input layer, and
- f₂ is is the recognition layer.

ヘロト 人間 とくほとくほとう

э

Fuzzy ART Fuzzy ARTMAP

Fuzzy ART

The pre-processing layer performs complement coding in order to avoid the problem of category proliferation, as follows:

$$A = (a_1, ..., a_m, 1 - a_1, ..., 1 - a_m)$$
(1)

Then, it receives the complement-coded of input sample (A) to determine the similarity level between current input A and the *j*-th prototype node in f_2 , as follows:

$$T_j = \frac{|\mathbf{A} \wedge \mathbf{W}_j|}{\alpha + |\mathbf{W}_j|} \tag{2}$$

where $\alpha > 0$ is the learning parameter, $W_j \equiv (w_{j,1}, ..., w_{j,2M})$ is the weight vector of the *j*-th prototype node in f_2 , and \wedge indicates the fuzzy *and* operator:

$$(u \land v)_i \equiv \min(u_i, v_i) \leftarrow u \land d \models v \in \mathbb{R} \land d \models v \in \mathbb{R} \land d \models v \in \mathbb{R}$$

Fuzzy ART Fuzzy ARTMAF

Fuzzy ART

The prototype node with the highest choice score is chosen as the winning node, denoted as node J, as follows:

$$T_J = max(T_j : j = 1, 2, ..., N)$$
 (4)

If node *J* satisfies the vigilance criterion, resonance is said to occur.

$$\frac{|\boldsymbol{A} \wedge \boldsymbol{W}_J|}{|\boldsymbol{A}|} > \rho \tag{5}$$

where ρ is the vigilance parameter of Fuzzy ART. However, if the condition in Eq. (5) is not satisfied, a mismatch occurs, whereby the selected node *J* is deactivated, and a new search cycle is triggered in Fuzzy ART to select a new winning node.

Fuzzy ART Fuzzy ARTMAP

This search cycle repeats until one of the existing prototype nodes satisfies the condition in Eq. (5), or a new prototype node is created in f_2 to encode the current input sample. Then, learning take place in order to update *J*-th weight vector (W_J) in f_2 as follows:

$$W_J^{(new)} = \beta (A \wedge W_J^{(old)}) + (1 - \beta) W_J^{(old)}$$
(6)

イロト イヨト イヨト イ

where β is learning rate of Fuzzy ART.

Fuzzy ART Fuzzy ARTMAP

Steps of Fuzzy ART:

For each training sample do

- Do complement coding (Eq. 1).
- ② Compute the choice value of all prototype nodes (Eq. 2).
- Find the winner prototype node (Eq. 4).
- Perform vigilance test (Eq. 5).
- If the vigilance test is not satisfied, deactivate the winner prototype node,go to step 2 (select other prototype node or add new one).

イロト イポト イヨト イヨト

Fuzzy ART Fuzzy ARTMAP

Steps of Fuzzy ART:

For each training sample do

- Do complement coding (Eq. 1).
- ② Compute the choice value of all prototype nodes (Eq. 2).
- Find the winner prototype node (Eq. 4).
- Perform vigilance test (Eq. 5).
- If the vigilance test is not satisfied, deactivate the winner prototype node,go to step 2 (select other prototype node or add new one).

イロト イポト イヨト イヨト

Fuzzy ART Fuzzy ARTMAP

Steps of Fuzzy ART:

For each training sample do

- Do complement coding (Eq. 1).
- ② Compute the choice value of all prototype nodes (Eq. 2).
- Find the winner prototype node (Eq. 4).
- Perform vigilance test (Eq. 5).
- If the vigilance test is not satisfied, deactivate the winner prototype node,go to step 2 (select other prototype node or add new one).

ヘロト ヘ戸ト ヘヨト ヘヨト

Fuzzy ART Fuzzy ARTMAP

Steps of Fuzzy ART:

For each training sample do

- Do complement coding (Eq. 1).
- ② Compute the choice value of all prototype nodes (Eq. 2).
- Find the winner prototype node (Eq. 4).
- Perform vigilance test (Eq. 5).
- If the vigilance test is not satisfied, deactivate the winner prototype node,go to step 2 (select other prototype node or add new one).

ヘロト ヘ戸ト ヘヨト ヘヨト

Fuzzy ART Fuzzy ARTMAP

Steps of Fuzzy ART:

For each training sample do

- Do complement coding (Eq. 1).
- ② Compute the choice value of all prototype nodes (Eq. 2).
- Find the winner prototype node (Eq. 4).
- Perform vigilance test (Eq. 5).
- If the vigilance test is not satisfied, deactivate the winner prototype node,go to step 2 (select other prototype node or add new one).

・ロン・西方・ ・ ヨン・

Fuzzy ART Fuzzy ARTMAP

Steps of Fuzzy ART:

For each training sample do

- Do complement coding (Eq. 1).
- ② Compute the choice value of all prototype nodes (Eq. 2).
- Find the winner prototype node (Eq. 4).
- Perform vigilance test (Eq. 5).
- If the vigilance test is not satisfied, deactivate the winner prototype node,go to step 2 (select other prototype node or add new one).

くロト (過) (目) (日)

Fuzzy ART Fuzzy ARTMAP

<ロ> (四) (四) (日) (日) (日)

Adaptive Resonance Theory
 Fuzzy ART

- Fuzzy ARTMAP
- 3 Numerical Example

4 Summary

5 References

Fuzzy ART Fuzzy ARTMAP

Fuzzy ARTMAP

Figure 1: The structure of FAM.

э

Farhad

Fuzzy ART Fuzzy ARTMAP

- Consists of two Fuzzy ART models, i.e., *ART_a* and *ART_b*, and a map field.
- *ART_a* and *ART_b* receive the complement-coded input sample (A) and its corresponding target class (B), respectively.
- Map field is used to map input samples into their corresponding outputs.

Fuzzy ART Fuzzy ARTMAP

・ロト ・聞 ト ・ ヨト ・ ヨトー

- Consists of two Fuzzy ART models, i.e., *ART_a* and *ART_b*, and a map field.
- *ART_a* and *ART_b* receive the complement-coded input sample (A) and its corresponding target class (B), respectively.
- Map field is used to map input samples into their corresponding outputs.

Fuzzy ART Fuzzy ARTMAP

ヘロト ヘ戸ト ヘヨト ヘヨト

- Consists of two Fuzzy ART models, i.e., ART_a and ART_b, and a map field.
- *ART_a* and *ART_b* receive the complement-coded input sample (A) and its corresponding target class (B), respectively.
- Map field is used to map input samples into their corresponding outputs.

Fuzzy ART Fuzzy ARTMAP

Fuzzy ARTMAP

When the winning nodes in both ART_a and ART_b are selected, the map-field vigilance test is applied as follows:

$$\frac{|\mathbf{y}^{b} \wedge \mathbf{W}_{J}^{ab}|}{|\mathbf{y}^{b}|} > \rho_{ab} \tag{7}$$

where W_J^{ab} is the weight vector from f_2^a to f^{ab} , ρ_{ab} is the map-field vigilance parameter, and y^b indicates the output vector of f_2^b , which is defined as follows:

$$y^{b} = \begin{cases} 1, & k = K \\ 0, & otherwise \end{cases}$$
(8)

where K is the winning ART_b prototype node.

Fuzzy ART Fuzzy ARTMAP

Fuzzy ARTMAP

If condition in Eq. (7) fails, it means the current *J*-th winning node in f_2^a makes an incorrect predicted class in ART_b . To correct this erroneous prediction, a match-tracking procedure is triggered to update the vigilance parameter of ART_a , as follows:

$$\rho_{a} = \frac{|\mathbf{A} \wedge \mathbf{W}_{J}^{a}|}{|\mathbf{A}|} + \delta \tag{9}$$

<ロ> (四) (四) (日) (日) (日)

where $\delta > 0$. Then, a new search cycle with the updated ρ_a setting ensues. This process ends once the map-field vigilance test is satisfied.

Fuzzy ART Fuzzy ARTMAP

As such, learning takes place in which the *J*-th node in f_2^a is updated to:

$$W_J^{a(new)} = \beta_a(A \wedge W_J^{a(old)}) + (1 - \beta_a)W_J^{a(old)}$$
(10)

イロト イポト イヨト イヨト

æ

where β_a is learning rate of ART_a .

Fuzzy ART Fuzzy ARTMAP

Fuzzy ARTMAP

-

Algorithm 1 The learning phase of FAM
Input: Parameters of FAM and training samples
Output: Parameters of trained FAM
1: for each training sample $(a_1,, a_m)$ do
2: Complement-coding (Eq.1).
 Calculate the choice function for all prototype nodes (W^a) (Eq. 2).
 Select the winning node using Eq. 3 (J-th node in W^a).
 Perform the vigilance test (Eq. 4) for the winning node.
 while the vigilance test is not satisfied do
7: Deactivate the winning node $(T_j = 0)$.
 if all prototype nodes in W^a are deactivated then
9: Add new node.
10: end if
11: Go to Step 3.
12: (The same cycle occurs for the target vectors to identify the winning prototype
node $(K-th)$, simultaneously).
 Perform the map-filed vigilance test (Eq. 7).
 while the condition in Eq. 7 is not satisfied do
 Perform match-tracking (Eq. 9).
 Deactivate the winning node (<i>J</i>-th) in W^a.
17: Go to Step 3.
 Update the winning node using Eq. 10.
19: end for

ヘロト 人間 とくほとくほとう

Numerical Example

Suppose in a tw0-class problem, FAM receives a sequence of input-output patterns, as follows:

$$a_1 = [0.1, 0.2]$$
 belongs to $b_1 = c_1 = [1]$

 $a_3 = [0.6, 0.7]$ belongs to $b_3 = c_2 = [0]$

The network parameters are set to their basic values: $\alpha_a=0$, $\rho_a=0$ and $\beta_a=1$. Suppose there are two uncommitted nodes in F_2^a : $W_1^a = W_2^a=[1, 1, 1, 1]$ and $W_1^{ab} = W_2^{ab}=[1, 1]$.

Numerical Example

Step 1: the complement-codded input vectors are as follows: $A_1=[0.1, 0.2, 0.9, 0.8]$ belongs to $b_1=c_1=[1, 0]$ $A_2=[0.8, 0.4, 0.2, 0.6]$ belongs to $b_2=c_2=[0, 1]$ $A_3=[0.6, 0.7, 0.4, 0.3]$ belongs to $b_3=c_2=[0, 1]$

Numerical Example

Input A_1 : Propagate A_1 to f_2^a . Since there is no previous learning, node J=1 is selected as winner.

$$\frac{|A_1 \wedge W_1|}{\alpha + |A_1|} = \frac{|[0.1, 0.2, 0.9, 0.8]| \wedge [1, 1, 1, 1]|}{0 + |2|} = 1 \ge \rho_a(\textit{Passed})$$

Map field activity: Since C_1 is the target class, $y^b = [1, 0]$. Map field vigilance test:

$$\frac{|y^b \wedge w_1^{ab}|}{|y^b|} = \frac{|[1,0]| \wedge [1,1]|}{|[0,1]|} = 1 \ge \rho_{ab}(\textit{Passed})$$

・ロン ・聞と ・ ヨン・

Numerical Example

Learning:

$$W_1^{a(new)} = \beta_a(A \wedge W_1^{a(old)}) + (1 - \beta_a)W_1^{a(old)}$$

$$= 1 \times [0.1, 0.2, 0.9, 0.8] \wedge [1, 1, 1, 1] + 0 = [0.1, 0.2, 0.9, 0.8]$$

Input A_2 : Propagate A_2 to f_2^a . Compute choice value:

$$T_{1} = \frac{|A_{2} \wedge W_{1}^{a}|}{\alpha + |W_{1}^{a}|} = \frac{1.1}{2} (Winner)$$
$$T_{2} = \frac{|A_{2} \wedge W_{2}^{a}|}{\alpha + |W_{2}^{a}|} = \frac{2}{4}$$

Numerical Example

$$rac{A_2 \wedge W_1^a|}{lpha + |A_2|} = rac{1.1}{2} \ge
ho_a \ (\textit{Passed})$$

Map field vigilance test: Since C_2 is target class, $y^b = [0, 1]$.

$$\frac{|y^{b} \wedge w_{1}^{ab}|}{|y^{b}|} = \frac{|[0,1]| \wedge [1,0]|}{|[0,1]|} = 0 \le \rho_{ab}$$
(*Faild*)
Match tracking: Assume δ =0.0001, thus ρ_{a} is raised to:

$$\rho_{a} = \frac{|A_{2} \wedge W_{1}^{a}|}{|A_{2}|} + \delta = 0.5501$$

Note that after increasing ρ_a , w_1^a fails:

$$\frac{|A_2 \wedge W_1^a|}{|A_2|^2} = \frac{1.1}{2} \leq \rho_a \quad (failed) \quad \text{areal}$$

Numerical Example

In F_2^a , node J=1 is inhibited, it is de-activated and input A_2 is re-propagated to F_2^a , and node J=2 is selected as winner node.

$$\frac{|A_2 \wedge W_2^a|}{\alpha + |A_2|} = \frac{|[0.8, 0.4, 0.2, 0.6]| \wedge [1, 1, 1, 1]|}{0 + |2|} = 1 \ge \rho_a = 0.5501(\textit{Pass})$$

Map field vigilance test: F_2^b output vector is still $y^b = [0, 1]$.

$$\frac{|y^b \wedge w_2^{ab}|}{|y^b|} = \frac{|[0,1]| \wedge [1,1]|}{|[0,1]|} = 1 \ge \rho_{ab} \text{ (passed)}$$

Learning:

$$W_2^{a(new)} = \beta_a(A \land W_2^{a(old)}) + (1 - \beta_a)W_2^{a(old)} = [0.8, 0.4, 0.2, 0.6]$$

$$W_2^{ab} = [0, 1]$$
Fathad

Numerical Example

Input A_3 : Propagate A_3 to f_2^a . Compute choice value:

$$T_{1} = \frac{|A_{3} \wedge W_{1}^{a}|}{\alpha + |W_{1}^{a}|} = \frac{1}{2}$$
$$T_{2} = \frac{|A_{3} \wedge W_{2}^{a}|}{\alpha + |W_{2}^{a}|} = \frac{1.5}{2} \quad (Winner)$$

Vigilance test:

$$rac{|A_3 \wedge W_2^a|}{lpha + |A_2|} = rac{1.5}{2} \ge
ho_a = 0$$
 (Passed)

э

Numerical Example

Map field vigilance test: Since C_2 is target class, $y^b = [0, 1]$.

$$\frac{|y^b \wedge w_2^{ab}|}{|y^b|} = \frac{|[0,1]| \wedge [0,1]|}{|[0,1]|} = 1 \ge \rho_{ab} \ (\textit{Passed})$$

Learning:

$$egin{aligned} & W_2^{a(\textit{new})} = eta_a(A_3 \wedge W_2^{a(\textit{old})}) + (1 - eta_a)W_2^{a(\textit{old})} \ &= [0.6, 0.7, 0.4, 0.3] \wedge [0.8, 0.4, 02, 0.6] = [0.6, 0.4, 0.2, 0.3] \ & W_2^{ab} \ ext{unchanged.} \end{aligned}$$

イロト イポト イヨト イヨト

ъ

Numerical Example

Therefore, two prototype nodes are created to learn A_1 , A_2 and A_3 , as follows: W_1^a =[0.1, 0.2, 0.9, 0.8], W_1^{ab} =[1,0] belongs to C_1 W_2^a = [0.6, 0.4, 0.2, 0.3], W_1^{ab} =[0,1] belongs to C_2

Test trained Fuzzy ARTMAP:

Assume a_4 =[0.2, 0.3] belongs to C_1 . Therefore, A_4 =[0.2, 0.3, 0.8, 0.7]

< □ > < □ > < □ > < □ > <

Numerical Example

Compute choice value:

$$T_{1} = \frac{|A_{4} \wedge W_{1}^{a}|}{\alpha + |W_{1}^{a}|} = \frac{1.8}{2} \quad (Winner)$$
$$T_{2} = \frac{|A_{4} \wedge W_{2}^{a}|}{\alpha + |W_{2}^{a}|} = \frac{1}{1.5}$$

Vigilance test:

$$rac{|A_4 \wedge W_1^a|}{lpha + |A_4|} = rac{1.8}{2} \ge
ho_a = 0 \;\;(\textit{Passed})$$

 W_1^a is winner, which is belong to C_1 . Therefore, the predicted class for A_4 is C_1 which is correct with its actual class.

Fuzzy ARTMAP

Figure 2: The number of created prototype nodes with different ρ_a setting.

イロン 不同 とくほ とくほ とう

ъ

Fuzzy ARTMAP

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

 The number of created prototype nodes increases with increasing ρ_a from 0.1 to 1.

 The accuracy of FAM increases with increasing ρ_a from 0.1 to 1.

イロン イボン イヨン イヨン

æ

- The number of created prototype nodes increases with increasing ρ_a from 0.1 to 1.
- The accuracy of FAM increases with increasing ρ_a from 0.1 to 1.

イロト イポト イヨト イヨト

э.

<ロ> (四) (四) (日) (日) (日)

- ART models are online learning ANNs with the capability of incremental learning.
- Fuzzy ART and Fuzzy ARTMAP (FAM) are two popular unsupervised and supervised learning models, respectively.

- ART models are online learning ANNs with the capability of incremental learning.
- Fuzzy ART and Fuzzy ARTMAP (FAM) are two popular unsupervised and supervised learning models, respectively.

References

[1] G. A. Carpenter, S. Grossberg, **A massively parallel architecture for a selforganizing neural pattern recognition machine**, Computer vision, graphics, and image processing 37 (1) (1987) 54-115.

[2] G. A. Carpenter, S. Grossberg, D. B. Rosen, **Fuzzy art: Fast stable learning and categorization of analog patterns by an adaptive resonance system**, Neural networks 4 (6) (1991) 759-771.

[3] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds and D. B. Rosen, **Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps**, in IEEE Transactions on Neural Networks, vol. 3 (5) (1992) 698-713.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Thanks!